skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Elizabeth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper compares different methods of using a large language model (GPT-3.5) for creating synthetic training data for a retrieval-based conversational character. The training data are in the form of linked questions and answers, which allow a classifier to retrieve a pre-recorded answer to an unseen question; the intuition is that a large language model could predict what human users might ask, thus saving the effort of collecting real user questions as training data. Results show small improvements in test performance for all synthetic datasets. However, a classifier trained on only small amounts of collected user data resulted in a higher F-score than the classifiers trained on much larger amounts of synthetic data generated using GPT-3.5. Based on these results, we see a potential in using large language models for generating training data, but at this point it is not as valuable as collecting actual user data for training. 
    more » « less